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call rk4(v,dv,nvar,x,h,v,derivs)
if (x+h.eq.x)pause ’stepsize not significant in rkdumb’
x=x+h
xx (k+1)=x Store intermediate steps.
do 12 i=1,nvar
y(@i,k+1)=v(i)
enddo 12
enddo 13
return
END
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16.2 Adaptive Stepsize Control for Runge-Kutta

A good ODE integrator should exert some adaptive control over itsown progress,
making frequent changesin its stepsize. Usually the purpose of this adaptive stepsize
control is to achieve some predetermined accuracy in the solution with minimum
computational effort. Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth uninteresting countryside.
The resulting gains in efficiency are not mere tens of percents or factors of two;
they can sometimes be factors of ten, a hundred, or more. Sometimes accuracy
may be demanded not directly in the solution itself, but in some related conserved
quantity that can be monitored.

Implementation of adaptive stepsize control requiresthat the stepping algorithm
return information about its performance, most important, an estimate of itstruncation
error. Inthis section wewill learn how such information can be obtained. Obviously,
the calculation of this information will add to the computational overhead, but the
investment will generally be repaid handsomely.

With fourth-order Runge-Kutta, the most straightforward technique by far is
step doubling (see, eg., [1]). We take each step twice, once as a full step, then,
independently, as two half steps (see Figure 16.2.1). How much overhead is this,
say in terms of the number of evaluations of the right-hand sides? Each of the three
separate Runge-Kutta steps in the procedure requires 4 evaluations, but the single
and double sequences share a starting point, so thetotal is11. Thisisto be compared
not to 4, but to 8 (the two half-steps), since — stepsize control aside — we are
achieving the accuracy of the smaller (half) stepsize. The overhead cost is therefore
a factor 1.375. What does it buy us?
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16.2 Adaptive Stepsize Control for Runge-Kutta 709
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Figure 16.2.1.  Step-doubling as a means for adaptive stepsize control in fourth-order Runge-Kutta.
Points where the derivative is evaluated are shown asfilled circles. The open circle represents the same
derivatives asthefilled circle immediately above it, so the total number of evaluations is 11 per two steps.
Comparing the accuracy of the big step with the two small steps gives acriterion for adjusting the stepsize
on the next step, or for rejecting the current step as inaccurate.

L et us denote the exact solution for an advance from x to = + 2k by y(x + 2h)
and the two approximate solutions by 31 (one step 2h) and y» (2 steps each of size
h). Since the basic method is fourth order, the true solution and the two numerical
approximations are related by

y(x +2h) = y1 + (20)%¢ + O(h®) + ...

. (16.2.1)

y(@ +2h) = ya +2(h°)p + O(h°) + ...
where, to order h®, the value ¢ remains constant over the step. [Taylor series
expansion tells us the ¢ is a number whose order of magnitudeisy (® (x)/5!.] The
first expressionin (16.2.1) involves (2h)5 since the stepsize is 2h, while the second
expressioninvolves2(h%) sincethe error on each stepish°¢. Thedifferencebetween
the two numerical estimates is a convenient indicator of truncation error

A=ys—1 (16.2.2)

It is this difference that we shall endeavor to keep to a desired degree of accuracy,
neither too large nor too small. We do this by adjusting 4.

It might also occur to you that, ignoring terms of order 46 and higher, we can
solve the two equations in (16.2.1) to improve our numerical estimate of the true
solution y(x + 2h), namely,

A
y(x +2h) = y2 + T O(h®) (16.2.3)

This estimate is accurate to fifth order, one order higher than the origina Runge-
Kutta steps. However, we can't have our cake and eat it: (16.2.3) may be fifth-order
accurate, but we have no way of monitoring its truncation error. Higher order is
not always higher accuracy! Use of (16.2.3) rarely does harm, but we have no
way of directly knowing whether it is doing any good. Therefore we should use
A as the error estimate and take as “gravy” any additional accuracy gain derived
from (16.2.3). In the technical literature, use of a procedure like (16.2.3) is caled
“local extrapolation.”

An aternative stepsize adjustment algorithm is based on the embedded Runge-
Kutta formulas, originally invented by Fehlberg. An interesting fact about Runge-
Kutta formulas is that for orders M higher than four, more than M function
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710 Chapter 16. Integration of Ordinary Differential Equations

evaluations (though never more than M + 2) are required. This accounts for the
popularity of the classical fourth-order method: It seems to give the most bang
for the buck. However, Fehlberg discovered a fifth-order method with six function
evaluations where another combination of the six functions gives a fourth-order
method. The difference between the two estimates of y(x + h) can then be used as
an estimate of the truncation error to adjust the stepsize. Since Fehlberg's original
formula, several other embedded Runge-Kutta formulas have been found.

Many practitioners were at one time wary of the robustness of Runge-Kutta-
Fehlberg methods. The feeling was that using the same evaluation points to advance
the function and to estimate the error was riskier than step-doubling, where the error
estimate is based on independent function evaluations. However, experience has
shown that this concernis not aproblemin practice. Accordingly, embedded Runge-
Kutta formulas, which are roughly a factor of two more efficient, have superseded
algorithms based on step-doubling.

The general form of a fifth-order Runge-Kutta formulais

kl = hf(xnayn)
ko = hf(xn + agh, yn + b21k1)

(16.2.4)
kﬁ = hf(:cn + agh,yn —+ b61k1 + -+ b65l€5)
Yni1 = Yn + c1k1 + coko + c3ks + caky + csks + coke + O(R)

The embedded fourth-order formula is
Y1 = Yn + ik + ik + ciks + cika + ciks + chhs + O(h°)  (16.2.5)

and so the error estimate is

6
A=yopr—yh = Y (6 — ki (16.2.6)

=1

The particular values of the various constants that we favor are those found by Cash
and Karp [2], and given in the accompanying table. These give a more efficient
method than Fehlberg's original values, with somewhat better error properties.
Now that we know, at least approximately, what our error is, we need to
consider how to keep it within desired bounds. What is the relation between A
and h? According to (16.2.4) — (16.2.5), A scales as h°. If we take a step h;
and produce an error A, therefore, the step hg that would have given some other
value Ay is readily estimated as
AO 0.2

ho = h1 A

(16.2.7)

Henceforth we will let Ay denote the desired accuracy. Then equation (16.2.7) is
used in two ways. If A islarger than Ay in magnitude, the equation tells how
much to decrease the stepsize when we retry the present (failed) step. If A is
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16.2 Adaptive Stepsize Control for Runge-Kutta 711

Cash-Karp Parameters for Embedded Runga-Kutta Method
i a; bij Ci ¢
1 37 2825
378 27648
1 1
2 = 5 0
3 | 3 3 9 250 18575
10 40 40 621 48384
4 3 3 _9 6 125 13525
5 10 10 5 59 55296
11 5 70 35 277
5 1 D 2 Tar 27 0 14336
6 7 1631 175 575 44275 253 512 1
8 55296 512 13824 110592 4096 1771 4
j= 1 2 3 4 5

smaller than Ay, on the other hand, then the equation tells how much we can safely
increase the stepsize for the next step. Local extrapolation consists in accepting
the fifth order value y,+1, even though the error estimate actually applies to the
fourth order value y; ;.

Our notation hides the fact that A is actually a vector of desired accuracies,
one for each equation in the set of ODEs. In general, our accuracy requirement will
be that all equations are within their respective allowed errors. In other words, we
will rescale the stepsize according to the needs of the “worst-offender” equation.

How is Ay, the desired accuracy, related to some looser prescription like “get a
solution good to one part in 106”2 That can be a subtle question, and it depends on
exactly what your application is! You may be dealing with a set of equations whose
dependent variables differ enormously in magnitude. In that case, you probably
want to use fractional errors, Ao = ey, where e is the number like 10 =6 or whatever.
On the other hand, you may have oscillatory functions that pass through zero but
are bounded by some maximum values. In that case you probably want to set A
equal to e times those maximum values.

A convenient way to fold these considerations into a generally useful stepper
routine is this: One of the arguments of the routine will of course be the vector of
dependent variables at the beginning of a proposed step. Call that y(1:n). Let us
require the user to specify for each step another, corresponding, vector argument
yscal(1l:n), and also an overall tolerance level eps. Then the desired accuracy
for the ith equation will be taken to be

Ay = eps X yscal (i) (16.2.8)

If you desire constant fractional errors, plug y into the yscal calling dot (no need
to copy the values into a different array). If you desire constant absolute errors
relativeto some maximum val ues, set the elementsof yscal equal to those maximum
values. A useful “trick” for getting constant fractional errors except “very” near
zero crossings is to set yscal (i) equal to |y (i) | + |k x dydx(i)|. (Theroutine
odeint, below, does this.)

Here is a more technical point. We have to consider one additional possibility
for yscal. The error criteria mentioned thus far are “local,” in that they bound the
error of each step individually. In some applications you may be unusually sensitive
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712 Chapter 16.  Integration of Ordinary Differential Equations

about a “global” accumulation of errors, from beginning to end of the integration
and in the worst possible case where the errors al are presumed to add with the
same sign. Then, the smaller the stepsize h, the smaller the value A o that you will
need to impose. Why? Because there will be more steps between your starting
and ending values of x. In such cases you will want to set yscal proportional to
h, typically to something like

Ay = eh x dydx (i) (16.2.9)

Thisenforcesfractional accuracy e not on thevaluesof y but (much more stringently)
on the increments to those values at each step. But now look back at (16.2.7). If A
has an implicit scaling with &, then the exponent 0.20 is no longer correct: When
the stepsize is reduced from atoo-large value, the new predicted value h ; will fail to
meet the desired accuracy when yscal is aso altered to thisnew h; value. Instead
of 0.20 = 1/5, we must scale by the exponent 0.25 = 1/4 for things to work out.

The exponents 0.20 and 0.25 are not really very different. This motivates us
to adopt the following pragmatic approach, one that frees us from having to know
in advance whether or not you, the user, plan to scale your yscal’'s with stepsize.
Whenever we decrease astepsize, | et us use the larger val ue of the exponent (whether
we need it or not!), and whenever we increase a stepsize, let us use the smaller
exponent. Furthermore, because our estimates of error are not exact, but only
accurate to the leading order in h, we are advised to put in a safety factor S whichis
afew percent smaller than unity. Equation (16.2.7) is thus replaced by

0.20
Shy % IAVIEVAN]
ho = Al 0.95 (16.2.10)
Shl =0 Ao < Al
1

We have found this prescription to be a reliable one in practice.
Here, then, is a stepper program that takes one “quality-controlled” Runge-
Kutta step.

SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs)

INTEGER n,NMAX

REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n)

EXTERNAL derivs

PARAMETER (NMAX=50) Maximum number of equations.

USES derivs, rkck
Fifth-order Runge-Kutta step with monitoring of local truncation error to ensure accuracy
and adjust stepsize. Input are the dependent variable vector y(1:n) and its derivative
dydx(1:n) at the starting value of the independent variable x. Also input are the stepsize
to be attempted htry, the required accuracy eps, and the vector yscal(1l:n) against
which the error is scaled. On output, y and x are replaced by their new values, hdid is the
stepsize that was actually accomplished, and hnext is the estimated next stepsize. derivs
is the user-supplied subroutine that computes the right-hand side derivatives.

INTEGER i

REAL errmax,h,htemp,xnew,yerr (NMAX),ytemp (NMAX) ,SAFETY,PGROW,

PSHRNK , ERRCON

PARAMETER (SAFETY=0.9,PGROW=-.2,PSHRNK=-.25,ERRCON=1.89e-4)
The value ERRCON equals (5/SAFETY) **(1/PGROW) , see use below.

h=htry Set stepsize to the initial trial value.

call rkck(y,dydx,n,x,h,ytemp,yerr,derivs) Take a step.
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16.2 Adaptive Stepsize Control for Runge-Kutta 713

errmax=0. Evaluate accuracy.
don i=1,n

errmax=max (errmax,abs(yerr (i) /yscal(i)))

enddo 11

errmax=errmax/eps Scale relative to required tolerance.

if (errmax.gt.1.)then Truncation error too large, reduce stepsize.
htemp=SAFETY*h* (errmax**PSHRNK)
h=sign(max (abs (htemp),0.1*abs(h)),h) No more than a factor of 10.
xnew=x+h
if (xnew.eq.x)pause ’stepsize underflow in rkgs’
goto 1 For another try.

else Step succeeded. Compute size of next step.

if (errmax.gt.ERRCON) then
hnext=SAFETY*h* (errmax**PGROW)

else No more than a factor of 5 increase.
hnext=5.%h

endif

hdid=h

x=x+h

do12 i=1,n
y(i)=ytemp(i)

enddo 12

return

endif

END

Theroutine rkqgs calls the routine rkck to take a Cash-Karp Runge-K utta step:

SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,derivs)

INTEGER n,NMAX

REAL h,x,dydx(n),y(n),yerr(n),yout(n)

EXTERNAL derivs

PARAMETER (NMAX=50) Set to the maximum number of functions.
USES derivs

Given values for n variables y and their derivatives dydx known at x, use the fifth-order
Cash-Karp Runge-Kutta method to advance the solution over an interval h and return
the incremented variables as yout. Also return an estimate of the local truncation er-
ror in yout using the embedded fourth-order method. The user supplies the subroutine
derivs(x,y,dydx), which returns derivatives dydx at x.

INTEGER i
REAL ak2(NMAX) ,ak3(NMAX) ,ak4 (NMAX) ,ak5 (NMAX) ,ak6 (NMAX) ,

ytemp (NMAX) ,A2,A3,A4,A5,A6,B21,B31,B32,B41,B42,B43,B51,
B52,B53,B54,B61,B62,B63,B64,B65,C1,C3,C4,C6,DC1,DC3,
DC4,DC5,DC6

PARAMETER (A2=.2,A3=.3,A4=.6,A5=1.,A6=.875,B21=.2,B31=3./40.,

B32=9./40.,B41=.3,B42=-.9,B43=1.2,B51=-11./54. ,B52=2.5,
B53=-70./27.,B54=35./27.,B61=1631./55296.,B62=175./512.,
B63=575./13824.,B64=44275./110692. ,B65=253./4096. ,
C1=37./378.,C3=250./621.,C4=125./594.,C6=512./1771.,
DC1=C1-2825./27648. ,DC3=C3-18575./48384. ,
DC4=C4-13525./55296.,DC5=-277./14336. ,DC6=C6-.25)

doun i=1,n First step.
ytemp (i)=y(i)+B21xh*dydx (i)

enddo 11

call derivs(x+A2%h,ytemp,ak2) Second step.

do12 i=1,n

ytemp (i) =y (i) +h* (B31*dydx (i) +B32*ak2(i))

enddo 12
call derivs(x+A3*h,ytemp,ak3) Third step.
do 13 i=1,n

ytemp (i)=y (i) +h* (B41*dydx (i)+B42*ak2(i)+B43*ak3(i))
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714 Chapter 16.  Integration of Ordinary Differential Equations

enddo 13
call derivs(x+A4*h,ytemp,ak4) Fourth step.
do1s i=1,n
ytemp (i)=y(i)+h* (B51*dydx (i) +B52*ak2(i)+B53*ak3(i)+
B54*ak4(i))
enddo 14
call derivs(x+A5%h,ytemp,ak5) Fifth step.
do1s i=1,n
ytemp (i)=y (i)+h* (B61*dydx (i) +B62*ak2 (i) +B63*ak3(i)+
B64*ak4 (i) +B65%ak5(i))

enddo 15
call derivs(x+A6%h,ytemp,ak6) Sixth step.
do16 i=1,n Accumulate increments with proper weights.
yout (i) =y (i) +h*(Cl*dydx (i)+C3*ak3(i)+C4*ak4 (i)+
C6*ak6(i))
enddo 16

do17 i=1,n
Estimate error as difference between fourth and fifth order methods.
yerr (i) =h*(DC1*dydx (i) +DC3*ak3(i)+DC4*ak4 (i)+DC5%ak5 (i)
+DC6*ak6 (1))
enddo 17
return
END

Noting that the above routines are al in single precision, don’t be too greedy in
specifying eps. The punishment for excessive greedinessisinteresting and worthy of
Gilbert and Sullivan’sMikado: Theroutine can always achievean apparent zero error
by making the stepsize so small that quantities of order hy’ add to quantities of order
y asif they were zero. Then the routine chugs happily along taking infinitely many
infinitesimal steps and never changing the dependent variables oneiota. (You guard
against this catastrophic loss of your computer budget by signaling on abnormally
small stepsizes or on the dependent variable vector remaining unchanged from step
to step. On a personal workstation you guard against it by not taking too long a
lunch hour while your program is running.)

Hereis afull-fledged “driver” for Runge-Kutta with adaptive stepsize control.
We warmly recommend this routine, or one likeit, for a variety of problems, notably
including garden-variety ODEs or sets of ODEs, and definite integrals (augmenting
the methods of Chapter 4). For storage of intermediate results (if you desire to
inspect them) we assume a common block path, which can hold up to KMAXX steps.
Because steps occur at unequal intervals results are stored only at intervals greater
than dxsav. Also in the block is kmax, indicating the number of steps that can be
stored. If kmax=0 thereis no intermediate storage, and the rest of the common block
need not exist. Otherwise you should set kmax = KMAXX. Storage of steps stops
if kmax is exceeded, except that the ending values are always stored. Again, these
controls are merely indicative of what you might need. The routine odeint should
be customized to the problem at hand.

SUBROUTINE odeint(ystart,nvar,x1,x2,eps,hl,hmin,nok,nbad,derivs,rkqgs)
INTEGER nbad,nok,nvar,KMAXX,MAXSTP,NMAX

REAL eps,hl,hmin,x1,x2,ystart(nvar),TINY

EXTERNAL derivs,rkgs

PARAMETER (MAXSTP=10000,NMAX=50,KMAXX=200,TINY=1.e-30)

Runge-Kutta driver with adaptive stepsize control. Integrate the starting values ystart (1:nvar)

from x1 to x2 with accuracy eps, storing intermediate results in the common block /path/.
h1 should be set as a guessed first stepsize, hmin as the minimum allowed stepsize (can
be zero). On output nok and nbad are the number of good and bad (but retried and

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



16.2 Adaptive Stepsize Control for Runge-Kutta 715

fixed) steps taken, and ystart is replaced by values at the end of the integration interval.
derivs is the user-supplied subroutine for calculating the right-hand side derivative, while
rkqs is the name of the stepper routine to be used. /path/ contains its own information
about how often an intermediate value is to be stored.

INTEGER i,kmax,kount,nstp

REAL dxsav,h,hdid,hnext,x,xsav,dydx(NMAX) ,xp (KMAXX) ,y (NMAX),

yp (NMAX,KMAXX) , yscal (NMAX)

COMMON /path/ kmax,kount,dxsav,xp,yp
User storage for intermediate results. Preset dxsav and kmax.

x=x1

h=sign(hl,x2-x1)

nok=0

nbad=0

kount=0

do 11 i=1,nvar
y(i)=ystart (i)

enddo 11
if (kmax.gt.0) xsav=x-2.*dxsav Assures storage of first step.
do 16 nstp=1,MAXSTP Take at most MAXSTP steps.

call derivs(x,y,dydx)
do 12 i=1,nvar
Scaling used to monitor accuracy. This general-purpose choice can be modified if need

be.
yscal(i)=abs(y(i))+abs (h*dydx(i))+TINY
enddo 12
if (kmax.gt.0)then
if (abs(x-xsav) .gt.abs(dxsav)) then Store intermediate results.
if (kount.lt.kmax-1)then
kount=kount+1
xp (kount)=x
do 13 i=1,nvar
yp(i,kount)=y (i)
enddo 13
Xsav=x
endif
endif
endif
if ((x+h-x2)*(x+h-x1) .gt.0.) h=x2-x If stepsize can overshoot, decrease.

call rkqgs(y,dydx,nvar,x,h,eps,yscal,hdid,hnext,derivs)
if (hdid.eq.h)then
nok=nok+1
else
nbad=nbad+1
endif
if ((x-x2)*(x2-x1).ge.0.)then Are we done?
do 14 i=1,nvar
ystart (1)=y(i)
enddo 14
if (kmax.ne.0)then
kount=kount+1 Save final step.
xp (kount)=x
do 15 i=1,nvar
yp(i,kount)=y (i)

enddo 15
endif
return Normal exit.
endif
if (abs(hnext) .1t .hmin) pause ’stepsize smaller than minimum in odeint’
h=hnext
enddo 16
pause ’too many steps in odeint’
return

END
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16.3 Modified Midpoint Method

This section discusses the modified midpoint method, which advances a vector
of dependent variables y(x) from a point = to a point z + H by a sequence of n
substeps each of size h,

h=H/n (16.3.1)

In principle, one could use the modified midpoint method in its own right as an ODE
integrator. In practice, the method finds its most important application as a part of
the more powerful Bulirsch-Stoer technique, treated in §16.4. You can therefore
consider this section as a preamble to §16.4.

The number of right-hand side evaluations required by the modified midpoint
method is n + 1. The formulas for the method are

20 = y()
21 = 20 + hf(z, 20)
Zm41 = Zm—1 + 2hf(x + mh, zy) for m=1,2,...,n—1

1
Zn + Zpn-1+ hf(.%‘ + H, Zﬂ)]

y(x"’H)%ynEi[

(16.3.2)

Herethe 2’s are intermediate approximations which march along in steps of h, while
yn, is the final approximation to y(xz + H). The method is basicaly a “centered
difference” or “midpoint” method (compare equation 16.1.2), except at the first and
last points. Those give the qualifier “modified.”

The modified midpoint method is a second-order method, like (16.1.2), but with
the advantage of requiring (asymptotically for largen) only one derivative evaluation
per step h instead of the two required by second-order Runge-Kutta. Perhaps there
are applications where the simplicity of (16.3.2), easily coded in-line in some other
program, recommendsit. In general, however, use of the modified midpoint method
by itself will be dominated by the embedded Runge-Kutta method with adaptive
stepsize control, as implemented in the preceding section.

The usefulness of the modified midpoint method to the Bulirsch-Stoer technique
(§16.4) derivesfrom a“deep” result about equations (16.3.2), due to Gragg. It turns
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